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Summary. The dynamics of a spacecraft equipped with magnetic agwiaperating under a static attitude and rate feedbackalontr
law designed using averaging theory is considered and ymapstic behavior of the closed-loop system is numericathalyzed,
finding both the regions in which the control attains whairgekand the regions in which it causes chaotic fluctuatidétiseospacecraft.

Introduction
Magnetic actuators have been studied extensively in re@sars (seee.g., the survey [10]), as they represent a very
attractive technology for attitude control (no moving garto propellant, high reliability). Unfortunately, themmiple of
operation of magnetic coils (control torques are genefiayadteracting with the magnetic field of the Earth) posesanaj
challenges for control law design as it does not allow to ethree independent control torques at each time indtant.
addition, these actuators are time-varying (almost-pically forced), as the control mechanism hinges on theatiaris
of the geomagnetic field along the spacecraft orbit. In githis, attitude stabilisation is possible as the systesspsses
average controllability properties for a wide range of bitilinations (see also [1]). Average controllability redbowed
the derivation of almost global stability conditions foats feedback control laws achieving inertial pointing (E&g
and Earth pointing (see [8]) for magnetically actuated speaft. Such results rely on averaging theor., proceed
by associating to the time-varying dynamics of the maga#yicontrolled spacecraft a time-averaged counterpalt an
showing that for sufficiently small values of a scaling paesen: the trajectories of the former can be approximated by
the ones of the latter. These results characterise the Iglobperties of magnetic state feedback controllers, baxde
open the problem of characterising the range of valuesfof which the results hold. In [3] (resp. [4]) local stabyjlit
has been analyzed via bifurcation theory and a cataloguthef possible attractors for the range of practical intesés
the parameter has been provided. This paper aims at ingg@stighe dynamics of a magnetically actuated spacecraft
under the state feedback control law of [7], for increasialygs ofz, so as to characterize in a systematic way its chaotic
behaviour and define the basins of attraction of the modeperfadion of the feedback system.

Spacecr aft model and control law
Only the case of a spacecraft in circular orbit with angudéed, is considered. Two reference systems are adopted: the
orbital axes originate in the satellite centre of mass, th@x) points to the Earth’s centre, the Y-axis points aldmay t
orbital velocity vector and the Z-axis is normal to the dagebrbit plane; the satellite body axes originate in thiekite
centre of mass and their axes are assumed to coincide withothgs principal inertia axes. Finally, in the followingeh
unit vectors corresponding to the orbital axes will be dedatithe,, e, ande, respectively, with the superscript(®)
when considering the components of the unit vectors aloagthital (body) axes. The attitude dynamics of a spacecraft
subject to gravity gradient can be expressed (in the boadydjaas [11]

I = S(w)lw + 3w S(Ied)ed + Toois @)

wherew € R3 is the vector of spacecraft angular ratés= diagl,, I,, I.] € R3*3 is the inertia matrix,S(-) is the
skew-symmetric matrix operator associated with vectossmroductd x b = S(b)a) andT..;s € R? is the vector of
external torques induced by the magnetic coils. The raatttitude kinematics is given by
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whereq =[g1 ¢ ¢3 q4]T = [q,T q4}T is the vector of unit norm Euler parameters (or quaternisese.g., [11])
andw, = w —w; = w + wpe? is the satellite angular rate relative to the orbital axesyady frame. Lettingd(q) the
attitude matrix relating the orbital and the body frames bas that? = A(q)e? = A(q)[1 0 O]T, and similarly for
eg,e‘;. The magnetic control torques are generated accordingtai’ ;s = S(B"(t))mwils, wheremeqis € R3isthe
vector of magnetic dipoles for the three coils @f@t) € R? is the vector formed with the body components of the Earth’s
magnetic field. Note that’(t) can be expressed in terms 4fq) (see [11] for details) and of the magnetic field vector

in the orbital frame, namel§(t), asb®(t) = A(q)b°(t). Since rani(S(Bb(t))) = 2, as mentioned in the Introduction
magnetic actuators do not provide full controllability dletsystem at each time instant. Lettipg= [0 0 0 1]T

(note thatA(+q) = I), the control problem consists in making the equilibriggrw,.) = (g, 0) of the closed-loop system
locally exponentially stable and ensuring that almost raljectories of the closed-loop system converge to the point

(q,w,) = (£4q,0). To this purpose the feedback control law,;;s = WST(B"(ﬁ))f;} (e2kpqr + ekyw, ) is applied,
which leads to the closed-loop dynamics
¢ = W(gw, ) (3)
I = S(w)lw+ 3wiS(Ied)eb —T (), L (e2kpqr + ekywy),
wherel'(t) = S(b°(¢))ST (b°(t)) > 0 andb®(t) = méb(t). As for the geomagnetic field, a dipole approximation (see
[9] for details) is considered.
Closed-loop system analysis

A preliminary analysis of the closed-loop system (3) wasqrered in [4], where the equilibriurtg, 0) was (numerically)
shown to be asymptotically stable for increasinthough non-stationary attractors were detected evetirgférom initial
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Figure 1. Numerical analysis of model (3), where the considespacecraft hab = diag[5, 60, 70] kg m?, operates in a near polar
(87 inclination) orbit with an altitude of50 km and a corresponding orbit period of ab6a00 s. As for the control law, the scaling
parametet varies, whilek, = 500 (Am?), k, = 200 Am?/(rad/3.

conditions close to the equilibriuif, 0). To estimate the basin of attraction of the equilibriggn0), a two-parameter
analysis w.r.t. the scaling parameteaind the distancé of the initial condition from the equilibrium was performetis
distance from an attitudg' to an attitude;?, a measure of the anglé (inus the cosine of half the angle) that rotates
q" into ¢ by rotating around a suitable axis is considered (egg,[2] for a geometric interpretation of such a metric).
Thus rotations oft7 give distancd, though rotations of-27 give maximum distanc®. For each point of a grid ovér
values of= (equally log-spaced ifi0~4, 1]) and20 values of§ (equally log-spaced ifil0~>, 1]), we run100 simulations

of model (3) initialized withy at distance from g around a randomly selected axis and= 0. For each simulation, we
compute the associated Lyapunov exponents [5], thus agapéliminating the transient dynamics, and check whether
if the equilibrium(g, 0) is reached. The white-to-black color code in Fig. 1 (lefgicates the fraction of the simulations
reaching an alternative attractor. For each of those stiunlave plot a vertical bar covering tldevalues spanned by the
reached attractor. The bar is green if the attractor is garimegative largest nontrivial LE), red if it is chaoticogitive
largest LE), and is plotted with transparency, so the moeetse simulations reaching the attractor, the more intenise i
the color. The white region at the bottom of Fig. 1 (left) comf the local stability of the equilibriurtg, 0), though

its basin of attraction vanishes for increasinglf the scaling parameter is too small, alternative periodic attractors
can be reached, though large attitude perturbations frenedilibrium are required. Note that this not in contraghwi
Proposition 2 of [8], that ensures the almost global sthdf the equilibrium(g, 0) for sufficiently small scaling and
sufficiently large control gaitk,. Fig. 1 is in fact produced with a constak)t (see caption), so that the control is too
mild whene is small. As expected, global stability is found for inteisge values of, whereas alternative periodic
and chaotic attractors are present for largeNote how the bars go close #o= 0 for increasing:, that means that the
fluctuating orbit in the attractor passes close to the dgyiilin (7, 0). Thus, a stronger control destabilizes the closed-loop
system, in the sense of reducing the basin of attractioneofiéisired equilibrium, and produces fluctuating attradtoats
are closer to it. Note, however, that the distance in staaeesfrom the equilibrium to the attractor is larger than what
is shown in the figure, due to the velocity componentand in fact larger attitude perturbations.at= 0 are required

to reach the attractor, as indicated by the white band atolterdn. Multiple attractors can be reached, as indicated by
coexisting green and red bars and exemplified in the rightgddine figure (multiple periodic attractors in the top panel
multiple periodic and chaotic attractors in the bottom generhe solid (resp. dashed) lines indicate the min (yéellow
and max (light blue) in stable (resp. unstable) periodic solutions, continugdgiorthogonal collocation techniques
[6]. Note that multiple periodic solutions, as the yellowdasrange ones in the top panels in Fig. 1 (right), are symmetri
cycles at the same distance from the equilibri(gy0), so that they give the same continuation curve in Fig. 1)(left
Periodic solutions undergo several bifurcations, inaigdiold, marking their appearance and disappearance, aiatipe
doubling and Neimark-Sacker, implying the loss of stapiliforus destruction is the observed cause for the appearanc
of chaotic attractors.

In conclusion, this analysis, to be possibly repeated fifeidint values of the control gains, allows designers te tilne
control law to guarantee the stability of the desired efriilim and robustness to modeling and parametric inac@asaci

References

[1] S.P.Bhat and A.S. Dham. Controllability of spacecrdtfitede under magnetic actuation. IIBEE Conference on Decision and Control, 2003.
[2] N. A. Chaturvedi, A.K. Sanyal, and N.H. McClamroch. Righody attitude controllEEE Control Systems, pages 30-51, June 2011.
[3] F. Della Rossa, M. Bergamasco, and M. Lovera. Bifurcatimalysis of the attitude dynamics for a magnetically auled spacecraft. Ifp1st
|EEE Conference on Decision and Control, 2012.
[4] F. Della Rossa, F. Dercole, and M. Lovera. Attitude digbanalysis for an Earth pointing, magnetically conteallspacecraft. |®roceedings of
the 19t IFAC Symposium on Automatic Control in Aerospace, pages 508-513, Wiirzburg, Germany, 2013.
[5] L. Dieci. Jacobian free computation of Lyapunov expdsedournal of Differential Equations, 14(3):697-717, 2002.
[6] E.J. Doedel, A. R. Champneys, F. Dercole, T. F. Fairgrjefu. A. Kuznetsov, B. Oldeman, R. C. Paffenroth, B. SanttistX. J. Wang, and C. H.
Zhang. AUTO-07p: Continuation and bifurcation softwaredadinary differential equations. Montreal, QC, 2007.
[7] M. Lovera and A. Astolfi. Spacecraft attitude controlngimagnetic actuatorg\utomatica, 40(8):1405-1414, 2004.
[8] M. Lovera and A. Astolfi. Global magnetic attitude coritod spacecraft in the presence of gravity gradidBEE Transactions on Aerospace and
Electronic Systems, 42(3):796-805, 2006.
[9] M. Psiaki. Magnetic torquer attitude control via asywtpt periodic linear quadratic regulation. A AA Guidance, Navigation, and Control
Conference, 2000.
[10] E. Silani and M. Lovera. Magnetic spacecraft attitudateol: A survey and some new resul@ontrol Engineering Practice, 13(3):357-371, 2005.
[11] J. Wertz. Spacecraft attitude determination and control. D. Reidel Publishing Company, 1978.



	Introduction
	Spacecraft model and control law
	Closed-loop system analysis

