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Abstract: The dynamics of a spacecraft equipped with magnetic actuators operating under
a static attitude and rate feedback control law designed using averaging theory is considered
and the asymptotic behavior of the closed-loop system as a function of the averaging scaling
parameter is analysed numerically through continuation. We show that the (almost) global
stability of the attitude equilibrium granted by the theory for sufficiently small scaling is lost
at larger gains. Moderately chaotic fluctuating regimes appear for increasing scaling, while
the attitude equilibrium maintains local stability, though with smaller and smaller basin of
attraction.

1. INTRODUCTION

Attitude control design for rigid spacecraft equipped with
magnetic actuators has been widely studied in recent years
(see, e.g., the survey paper Silani and Lovera (2005)). As is
well known, the design problem is challenging due to the
principle of operation of such actuators, which generate
control torques by interacting with the magnetic field of
the Earth. This has a number of implications which make
the magnetic attitude control problem significantly differ-
ent from the conventional one. First of all, such actuators
cannot provide three independent control torques at each
time instant. In addition, their behavior is time-varying
(periodically forced), as the control mechanism hinges on
the variations of the Earth magnetic field along the space-
craft orbit. Nevertheless, attitude stabilisation is possible
because on average the system possesses strong controlla-
bility properties for a wide range of orbit inclinations (see
also Bhat and Dham (2003)).

A significant effort has been dedicated in recent years to
the problems of analysis and design of magnetic control
laws for local operation of a satellite near a constant refer-
ence attitude, using mainly tools from periodic control the-
ory exploiting the (quasi) periodic behavior of the system
near an equilibrium (see, e.g., Lovera et al. (2002); Psiaki
(2001); Wisniewski and Stoustrup (2004); Zanchettin and
Lovera (2011)).

Similarly, attention has been dedicated to global formula-
tions of the problem. In Wisniewski and Blanke (1999);
Damaren (2002); Arduini and Baiocco (1997) the attitude
regulation problem for Earth pointing spacecraft has been
addressed exploiting periodicity assumptions and resorting
to passivity arguments to prove local asymptotic stabilis-
ability of stable open-loop equilibria. In Wang and Shtessel
(1998) similar arguments have been used to study a state
feedback control law for the particular case of an inertially
spherical spacecraft. More recently, in Lovera and Astolfi

(2004) (resp. Lovera and Astolfi (2006)) almost global 1

stability conditions for state feedback control laws achiev-
ing inertial pointing (resp. Earth pointing) for magneti-
cally actuated spacecraft have been presented. The above
mentioned results concerning almost global stabilisation
using magnetic actuators have been derived by resorting
to averaging theory, i.e., by associating to the time-varying
dynamics of the magnetically controlled spacecraft a suit-
ably defined time-averaged counterpart and showing that
for sufficiently small values of a scaling parameter ε the
trajectories of the former can be approximated by the ones
of the latter.

This averaging technique provides an interesting charac-
terisation of the global properties of magnetic state feed-
back controllers, but leaves open the problem of character-
ising the range of values of the scaling parameter for which
the result actually holds. In Della Rossa et al. (2012) the
above mentioned characterisation was carried out (using
bifurcation analysis) for the case of an inertially pointing
satellite and provided a number of insights into the dynam-
ics of the controlled spacecraft. Note, in passing, that while
a few analyses based on bifurcation theory for the dynam-
ics of a rigid spacecraft immersed in a central gravitational
field can be found in the literature (see, e.g., Fujii et al.
(2000); Kuang et al. (2002)), as far as the interaction with
the geomagnetic field is concerned it appears that only
the case of a spacecraft with a constant residual magnetic
dipole has been studied (see Chen and Liu (2002)). Note
that nonlinear analysis methods have been also applied
to atmospheric flight dynamics problems, see, e.g., Mehra
and Prasanth (1998); Lowenberg and Menon (2007).

The aim of this paper is to investigate numerically the
local and global stability of an Earth pointing magnetically

1 Given a system ẋ = f(x) we say that an equilibrium x0 is almost
globally asymptotically stable if it is locally asymptotically stable,
all the trajectories of the system are bounded and the set of initial
conditions giving rise to trajectories which do not converge to x0 has
zero Lebesgue measure.
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actuated spacecraft operating under the state feedback
control law of Lovera and Astolfi (2006), for increasing
values of the scaling parameter ε. Continuation techniques
(typical of numerical bifurcation analysis, see Meijer et al.
(2009)) are used to analyse the Floquet multipliers of the
limit cycle of the (periodically forced) system associated
with the attitude equilibrium. Time is discretized using
orthogonal collocation techniques (see, e.g., de Boor and
Swartz (1973); Ascher et al. (1995)) and, provided the
resolution is sufficiently high, it is found that all multipliers
remain in the unit circle for reasonable values of the scaling
parameter. By studying the least stable eigenfunctions,
it is further possible to characterize the perturbations
that take longer to be reabsorbed, or eventually lead to
alternative attractors. In this way alternative fluctuating
attitude regimes characterized by positive Lyapunov expo-
nents (chaotic attractors) can be determined. Such regimes
require smaller and smaller perturbations to be reached as
the control gain is increased.

The paper is organized as follows. In Section 2 the model
of the system is presented, while in Section 3 the state
feedback magnetic attitude control law studied in this
paper is briefly described. Subsequently, in Section 4 the
local analysis approach is presented and its results are
discussed. Finally, in Section 5 some preliminary results
of a global analysis are presented.

2. SPACECRAFT MODEL

Coordinate frames For the purpose of the present anal-
ysis, the following reference systems are adopted.

• Earth Centered Inertial reference axes (ECI). The
origin of these axes is in the Earth’s centre. The X-
axis is parallel to the line of nodes. The Z-axis is
parallel to the Earth’s geographic north-south axis
and pointing north. The Y-axis completes the right-
handed orthogonal triad.

• Orbital Axes (X0, Y0, Z0). The origin of these axes is
in the satellite centre of mass. The X-axis points to
the Earth’s centre; the Y-axis points in the direction
of the orbital velocity vector. The Z-axis is normal to
the satellite orbit plane.

• Satellite body axes. The origin of these axes is in
the satellite centre of mass; the axes are assumed to
coincide with the body’s principal inertia axes.

In this paper only the case of a spacecraft in a circular
orbit is considered; the (constant) orbital angular rate
will be denoted by ω0. In the following the unit vectors
corresponding to the orbital axes will be denoted with ex,
ey and ez respectively, with the superscript o (b) when
considering the components of the unit vectors along the
orbital (body) axes.

Dynamics The attitude dynamics of a spacecraft subject
to gravity gradient can be expressed in the body frame as
(Wertz, 1978)

Iω̇ = S(ω)Iω + 3ω2
0S(Ie

b
x)e

b
x + Tcoils + Tdist (1)

where ω ∈ R
3 is the vector of spacecraft angular rates,

I = diag[Ix, Iy , Iz] ∈ R
3×3 is the inertia matrix, S(ω) is

given by

S(ω) =

[

0 ωz −ωy

−ωz 0 ωx

ωy −ωx 0

]

, (2)

Tcoils ∈ R
3 is the vector of external torques induced by

the magnetic coils and Tdist ∈ R
3 is the vector of external

disturbance torques.

Relative kinematics Dealing with the dynamics of an
Earth pointing satellite, the focus is on the relative kine-
matics rather than on the inertial kinematics. We therefore
consider the attitude of the spacecraft with respect to
the (rotating) orbital axes. The attitude kinematics will
described in terms of the four Euler parameters (or quater-
nions, see, e.g., Wertz (1978)), which lead to the following
representation for the relative attitude kinematics

q̇ = W̃ (q)ωr (3)

where q = [q1 q2 q3 q4]
T
=

[

qTr q4
]T

is the vector of unit

norm (qT q = 1) Euler parameters,

W̃ (q) =
1

2







q4 −q3 q2
q3 q4 −q1
−q2 q1 q4
−q1 −q2 −q3






(4)

and ωr = ω − ωt = ω + ω0e
b
z is the satellite angular rate

relative to the orbital axes, in body frame. Letting A(q) the
attitude matrix relating the orbital and the body frames,
one has that

ebx = A(q)eox = A(q)

[

1
0
0

]

(5)

and similarly for eby,e
b
z. Finally, note that q̄ = [0 0 0 1]

T

represents the attitude equilibrium to be stabilized and
that A(q) = I3 (where I3 is the identity matrix of
dimension 3) for q = ±q̄.

Magnetic coils The magnetic attitude control torques
are generated by a set of three magnetic coils, aligned
with the spacecraft principal inertia axes, which generate
torques according to the law

Tcoils = mcoils × b̃(t) = S(b̃(t))mcoils, (6)

where × denotes the vector cross product, mcoils ∈ R
3 is

the vector of magnetic dipoles for the three coils, b̃(t) ∈ R
3

is the vector formed with the components of the Earth’s
magnetic field in the body frame of reference. Note that
the vector b̃(t) can be obtained from the magnetic field

vector b̃0(t) expressed in the inertial coordinates through
the attitude matrix A(q), namely

b̃(t) = A(q)b̃0(t), (7)

and that the orthogonality of A(q) implies ‖b̃(t)‖ =

‖b̃0(t)‖. Since S(b̃(t)) is structurally singular, as mentioned
in the Introduction, magnetic actuators do not provide
full controllability of the system at each time instant.

In particular, it is easy to see that rank
(

S(b̃(t))
)

= 2

(since ‖b̃0(t)‖ 6= 0 along all orbits of practical interest for

magnetic control) and that the kernel of S(b̃(t)) is given

by the vector b̃(t) itself, i.e., at each time instant it is not
possible to apply a control torque along the direction of
b̃(t).
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If a preliminary feedback of the form

mcoils =
1

‖b̃0(t)‖2
ST (b̃(t))u (8)

is applied to the system, where u ∈ R
3 is a new control

vector, the overall dynamics can be written as

q̇ = W̃ (q)ωr

Iω̇ = S(ω)Iω + 3ω2
0S(Ie

b
x)e

b
x + Γ(t)u+ Tdist

(9)

where Γ(t) = S(b(t))ST (b(t)) ≥ 0 and b(t) = 1
‖b̃0(t)‖

b̃(t) =

1
‖b̃(t)‖

b̃(t). Similarly, define Γ0(t) = S(b0(t))S
T (b0(t)) ≥ 0,

and b0(t)=
1

‖b̃0(t)‖
b̃0(t).

As for the geomagnetic field, note that (see Psiaki (2001))
a dipole approximation of the Earth’s magnetic field,
under the assumptions of no Earth rotation and no orbit
precession, yields the following periodic model for the
magnetic field vector, expressed in orbit coordinates:

b̃0(t) =
µf

a3

[

2 sin(ω0t) sin(im)
cos(ω0t) sin(im)

cos(im)

]

(10)

where µf = 7.9 1015 Wbm is the dipole strength, a is the
orbit semimajor axis and im is the orbit’s inclination with
respect to the geomagnetic equator.

3. STATE FEEDBACK STABILIZATION

In this Section the general stabilisation result for a space-
craft with magnetic actuators given in Lovera and Astolfi
(2006) for the case of full state feedback (attitude and rate)
is recalled. More precisely, an almost globally convergent
adaptive PD-like control law for Earth pointing magnetic
attitude regulation is considered. The derivation of the
control law is based on the following preliminary result.

Proposition 1. Consider the system (9) and the control
law

u = −εkvωr. (11)

Let

Γ̄0 = lim
T→∞

1

T

∫ T

0

Γ0(t)dt.

Supposing that 0 < Γ̄0 < I3, then for all ε > 0 and kv > 0
there exists t̄ > 0 such that for all t > t̄

Γ̄(t) =
1

t

∫ t

0

Γ(τ)dτ > 0. (12)

Proof. See Lovera and Astolfi (2006). ⊳
The above proposition ensures that for sufficiently small
angular rates the system (9) has “average” controllability
properties as expressed by the full rank of the matrix Γ̄.
This fact allows the application of averaging theory (see
Khalil (2001) for details) for the derivation of the control
law studied in this paper, which is defined in the following
Proposition.

Proposition 2. Consider the system (9) and the control
law

u =

{

−εkvωr t ≤ t̄

−Γ̂−1
av (ε

2kpqr + εkvωr) t > t̄
(13)

where
˙̂
Γav =

1

t
Γ−

1

t
Γ̂av, t > 0 (14)

and
Γ̂av(0) = Γ(0). (15)

Then there exist ε⋆ > 0, kp > 0, kv > 0 such that for
any 0 < ε < ε⋆ the control law renders the equilibrium
(q, ωr) = (q̄, 0) of the closed loop system (9),(13), (14)
locally exponentially stable. Moreover, all trajectories of
the closed loop system (9),(13), (14) converge to the points
(q, ωr) = (±q̄, 0).

Proof. See Lovera and Astolfi (2006). ⊳
Proposition 2 shows that for magnetic attitude control
the proportional and derivative actions must meet the
scaling condition defined by averaging to guarantee closed-
loop stability. Therefore, this result provides a useful
guideline for the design of magnetic controllers in practical
cases. Unfortunately, the choice of ε cannot be carried
out on the basis of Proposition 2 only, but requires some
additional methods and tools, which will be discussed
in the following Sections. In particular, in order to deal
with the periodically forced (i.e., nonautonomous) nature
of the closed-loop system, Floquet theory will be used
in Section 4 for the local analysis (i.e., based on the
linear approximation of the closed-loop system around the
equilibrium (q̄, 0)) while a fully non-linear investigation
will be carried out in Section 5.

In the following we will consider a spacecraft with an
inertia matrix given by I = diag[5, 60, 70] kgm2, operating
in a near polar (87o inclination) orbit with an altitude
of 450 km and a corresponding orbit period of about
5600 s. Note that the first element of the inertia matrix
is much smaller than the other two: such an inertia matrix
is representative of a small satellite with a long gravity
gradient boom along the x axis (see, e.g., Wisniewski and
Blanke (1999)). As for the control law, the considered
parameters are given by ε = 0.001, kp = 500 (Am2),
kv = 200 Am2/(rad/s).

4. LOCAL STABILITY ANALYSIS

In this Section the local stability of the closed-loop atti-
tude equilibrium is analysed using a numerical approach.
We consider the proposed model (9),(13),(14) neglecting
the initial damping part (i.e., only the second control law
in (13)) is used, with Γav obtained as the asymptotic
solution of (14), thus obtaining the system

q̇ = W̃ (q)ωr

Iω̇ = S(ω)Iω + 3ω2
0S(Ie

b
x)e

b
x − Γ(t)Γ̂−1

av (ε
2kpqr + εkvωr).

(16)
The system has the quaternion norm qT q as an invariant
of motion, so numerical drift towards manifolds where
qT q = const 6= 1 can be observed in simulation. Instead
of eliminating one variable, a damping term orthogonal
to the 4-dim sphere qT q = 1 is added to the kinematic
equation. Therefore, equation (16) is replaced with

q̇ = W (q)ωb + (1 − qT q)q.

In order to analyze the system with bifurcation analysis
techniques (using packages as MatCont (Dhooge et al.,
2003) or AUTO (Doedel et al., 2007)), the system is made
autonomous, by adding the nonlinear oscillator

α̇ = α− ω0β − (α2 + β2)α,

β̇ = ω0α+ β − (α2 + β2)β.
(17)
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Fig. 1. Floquet multipliers associated with the periodic
solution x̄(t) computed for several values of NTEST (40,
60, 80, and 100). Only the red multiplier is sensible
to NTST, denoting its inaccuracy for low NTST or high
ε.

Starting at the point (α, β) = (1, 0), we have α = cos(ω0t)
and β = sin(ω0t), so the additional states α and β can
be used to eliminate the periodic time dependence from
(10). For ease of notation, the full autonomous system
(equations (16),(17)) is denoted by

ẋ = F (x, ε), x = [q, ωr, α, β] ∈ R
9. (18)

Note that the attitude equilibrium of the nonautonomous
system is now a limit cycle of the new autonomous system,
hereafter denoted by x̄(t) = [q̄, 0, cos t, sin t].

As a first approach to the (local) stability of the limit cycle
x̄(t) for system (18), the periodic solution was continued
for increasing ε. For this, the considered system has been
implemented in MatCont, which automatically discretizes
the considered solution through orthogonal collocation
techniques (see, e.g., de Boor and Swartz (1973); Ascher
et al. (1995)). Orthogonal collocation makes use of an
adaptive mesh subdividing the time period into NTEST
subintervals, in which the solution is approximated by
polynomials of NCOL degree. In so doing the 9-dimensional
boundary value problem is rewritten as an 9*(NTEST NCOL
+1)-dimensional algebraic problem, that can be continued
with respect to a parameter (say ε) (see Allgower and
Georg (2000); Deuflhard et al. (1987); Meijer et al. (2009)
for details). To compute the tangent direction to the
ε-branch of solutions, it is necessary to compute the
monodromy matrix M , such that v(1) = Mv(0), where
v̇(t) = TJ(x̄(t))v(t) is the linearized dynamics in the
neighborhood of the limit cycle x̄(t). Thus, the Floquet
multipliers µi of the limit cycle are obtained (with great
precision, at least for the largest one) as a by-product
of the continuation. Note that one of the eigenvalues of
M must be equal to +1 (the others being the Floquet
multipliers), and verification of this condition along the
continuation guarantees the accuracy of the computation.

In Figure 1 the multipliers associated with the periodic
solution x̄(t) are reported, for different values of mesh
dimension NTEST. As can be seen from the figure, all
multipliers but one are not sensible to NTEST, while a
real multiplier (very small for small ε), becomes unstable
with increasing ε. However, the instability occurs at larger
and larger values of ε if NTEST is increased. In view
of this, the instability can be classified as a numerical
artifact (the same computation made with NTEST = 1000
makes the destabilizing multiplier exit the unit circle at
ε ∼ 47). To better understand this phenomenon, the
eigenfunction associated with the diverging multiplier has
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Fig. 2. Real and imaginary parts of the eigenfunction
associated with the complex conjugate multipliers
nearest to the stability boundary, for ε = 0.1, µ1,2 =
−0.7522± 0.5509i (‖µ1,2‖ = 0.9324)).

been computed, by constructing the null-space of
{

v̇(t)−A(t)v(t) = 0, t ∈ [0, T ],
µv(T )− v(0) = 0,

with the normalization equation (
∫ T

0 〈v(t), v(t)〉dt = 1),
using Gauss collocation and bordering techniques (Doedel
et al., 2003; Della Rossa et al., to appear). Bordering
allows to further test the accuracy of the computed pair
multiplier-eigenfunction, providing a residual value that
approaches 0 the more the computation is correct. We
could therefore check that the residual increases (even
by 4 or 5 orders of magnitude) as soon as the computed
multiplier becomes greater than 10−9. This fact confirms
that the obtained instability is only a numerical artifact.
Moreover, the inspection of the eigenfunction shows that
there are high frequency oscillations (with large magnitude
on the q1 and q2 directions), with frequency that grows
with ε. This fact explains why a larger NTST is necessary
to accurately compute the multipliers for large values of ε.

The obtained results allow to rule out loss of local stability
up to very large values of ε. On the other hand, in Figure 1
it is possible to see a pair of complex conjugate multipliers
reaching the stability boundary if ε increases. In Figure
2 the real and imaginary parts of the eigenfunctions (i.e.,
the basis of the eigenspace) associated with this complex
multiplier pair are shown (again, the q1 and q2 compo-
nents are dominant). Perturbations given in the directions
generated with this basis are associated with the slowest
transients. Notice that, even if those two multipliers don’t
lead to stability loss, their absolute value is close to one
(‖µ‖ > 0.9 if ǫ > 0.09). We can therefore deduce that per-
turbations along the q1 and q2 directions are the ones that
can more easily take to alternative asymptotic regimes,
if existent, as will be discussed in the next section. Note
that perturbations along the q1 and q2 directions amount
to rotations around the roll and yaw axes (recall the
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definition of the orbital reference frame given in Section 2),
which, for the considered orbit inclination, correspond to
the non instantaneously controllable axes. The sensitivity
of the feedback system to such perturbations is therefore
easily explained. The pitch (orbit normal) axis, on the
other hand, is locally instantaneously controllable, so it
turns out to be less sensitive to perturbations.

5. GLOBAL ANALYSIS

A careful analysis of the basin of attraction for the atti-
tude equilibrium x̄(t) calls for the construction of a two-
parameter map in which both ε and the initial condition
are varied, with randomized initial conditions x(0) =
x̄(0) + ∆x. Carrying out such an analysis is computa-
tionally hard, since, as shown in the previous Section, the
spacecraft attitude dynamics is characterised by a wide
frequency separation between the closed-loop transients
and the period of orbital revolution. In the following some
preliminary results in this direction are presented and
discussed. Recall that in the simulation of model (18)
the initial damping phase (aimed at reducing the relative
velocity ωr) is neglected, so that we consider initial condi-
tions with sufficiently small |ωr|.

First of all it was noticed that if ε is sufficiently small
(say ε < 0.005), all the randomized tests confirm the
result presented in Proposition 2. If now one considers a
larger value for ε (e.g., ε = 0.01), initial conditions with a
small perturbation magnitude ‖∆x‖ belong to the basin
of attraction of the attitude equilibrium, while farther
initial conditions lead to a different attractor (see the
simulation shown in Figure 3). Note that, as shown in
the previous section, in order to guarantee convergence
to the desired equilibrium it is not necessary that the
perturbation ∆x is generally small, but it should be small
in the q1 and q2 components. A projection in the angular
rate of the attractor reached in Figure 3 is shown in Figure
4. The shown trajectory corresponds to one spacecraft
orbit: notice, as expected, that we have high frequency
oscillations. Computing the Lyapunov exponents of the
attractor (Wolf et al., 1985) we obtain that the first one
takes value L1 = 0.0089 (L2 = −0.0007, L3 = −0.0013),
confirming that we are in presence of a (weakly) chaotic
behavior. For an even larger value of ε (ε = 0.1) a similar
result is obtained even starting from a point nearer to the
trivial equilibrium (‖∆x‖ = 10−5). The oscillations have
both larger amplitude and higher frequency. Nevertheless,
the computed first Lyapunov exponent is smaller (L1 =
0.0006, L2 = −0.000002, L3 = −0.0005), and the attractor
is more regular, all indications that the chaotic behavior
is weaker than in the previous case.

6. CONCLUDING REMARKS

In this paper the dynamics of an Earth pointing spacecraft
equipped with magnetic actuators operating under a static
attitude and rate feedback control law designed using
averaging theory has been considered. The problem of
determining the asymptotic behavior of the closed-loop
system as a function of the averaging scaling parameter has
been analyzed, using numerical continuation methods. The
results provide a useful complement to the existing theory
based on averaging techniques as they allow an assessment
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Fig. 3. Time evolution of quaternion (upper panels) and
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condition far from the desired asymptotic behavior
(ε = 0.01, ‖∆x‖ = 10−3).
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of the range of values of the scaling parameter for which
the closed-loop system exhibits the desired equilibrium
as sole asymptotic behavior and a catalogue of other
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possible attractors for the range of practical interest of
the parameter.
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