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Abstract— The dynamics of a spacecraft equipped with mag- global stabilisation using magnetic actuators have been
netic actuators operating under a static attitude and rate eed-  derived by resorting to averaging theorg, by associating
back control law designed using averaging theory is consided  , the time-varying dynamics of the magnetically contrdlle
and the asymptotic behaviour of the closed-loop system as a . . .
function of the averaging scaling parameter is analysed, usg spac:(_acraft a swtably_d_efmed time-averaged counte.rpdrt an
bifurcation methods. showing that for sufficiently small values of a scaling pa-

rameters the trajectories of the former can be approximated
I. INTRODUCTION by the ones of the latter. This result provides an intergstin

The problem of attitude control of rigid spacecraftcharacterisation of the global properties of magneticestat
equipped with magnetic actuators has been widely studiéegedback controllers, but leaves open the problem of char-
in recent years (se&g., the survey paper [20]). The main acterising the range of values of the scaling parameter for
difficulty in this problem is due to the principle of operatio which the result actually holds.
of such actuators. Indeed, magnetic coils generate controlln view of the above discussion, the aim of this paper
torques by interacting with the magnetic field of the Eartlis to investigate the dynamics of a magnetically actuated
and this has a number of implications which make thépacecraft operating under the state feedback control law
magnetic attitude control problem significantly differénam  of [15], for increasing values of the scaling parameter
the conventional one. First of all, it is not possible byThe tools employed in the study are Floquet theory for
means of such actuators to provide three independent ¢ontiee asymptotic stability analysis of the linearised mode a
torques at each time instant. In addition, the behaviour dfifurcation theory (sees.g., [18] and the references therein)
these actuators is time-varying (periodically forced)tizes for larger values of the parameter. Note, in passing, thaewh
control mechanism hinges on the variations of the Earth few analyses based on bifurcation theory for the dynamics
magnetic field along the spacecraft orbit. Nevertheless, atof a rigid spacecraft immersed in a central gravitationad fie
tude stabilisation is possible becauseaverage the system can be found in the literature (seeg., [12], [13]), as far
possesses strong controllability properties for a widegean as the interaction with the geomagnetic field is concerned it
of orbit inclinations (see also [4]). appears that only the case of a spacecraft with a constant

A significant effort has been dedicated in recent years t@sidual magnetic dipole has been studied (see [6]), while
the problems of analysis and design of magnetic control lavibe case of magnetic feedback control is an open problem.
in the I|_near casei.e.,, control laws forlocgl operation Qf Il SPACECRAET MODEL
a satellite near a constant reference attitude. In paaticul
nominal and robust stability and performance have been In the following we will focus on the case of an iner-
studied, using mainly tools from periodic control theorytially pointing spacecraft, for modelling which the follavg
exploiting the (quasi) periodic behavior of the system ned€ference systems have to be defined.
an equilibrium (seee.g., [17], [19], [24], [25)). « Earth Centered Inertial reference frame (ECI). The

Similarly, attention has been dedicatedgtobal formula-
tions of the problem. In [23], [7], [2] the attitude regulati

problem for Earth pointing spacecraft has been addressed ex

ploiting periodicity assumptions on the system and resgrti
to passivity arguments to prove local asymptotic statbilsa
ity of stable open-loop equilibria. In [21] similar argunien

have been used to study a state feedback control law for

the particular case of an inertially spherical spacechaftre
recently, in [15] (resp. [16]) stability conditions for sta
feedback control laws achieving inertial pointing (resprtb

pointing) for magnetically actuated spacecraft have been

origin of this reference frame is in the Earth’s centre.
The X-axis is parallel to the line of nodesg, the
intersection between the Earth’'s equatorial plane and
the plane of the ecliptic) and is positive in the Vernal
equinox direction (Aries point). The Z-axis is defined
as parallel to the Earth’'s geographic north-south axis,
pointing north. The Y-axis completes the right-handed
orthogonal triad.

Satellite body reference frame. The origin of this frame
is in the satellite centre of mass; for the sake of
simplicity the axes are assumed to coincide with the

presented. The above mentioned results concerning almost body’s principal inertia axes.
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The attitude dynamics can be expressed by Euler’s equatidssapplied to the system, where € R? is a new control

as [22] vector. Then the overall dynamics can be written as
Ii = S(w)Iw + Teoits + Taist (1) qg = W(gw 3
Io = S(w)lw+T(t)u (8)

wherew € R? is the vector of spacecraft angular rates, in

the body frame/ € R**? is the inertia matrix, and(w) is  wherel'(t) = S(b(t))ST (b(t)) > 0 andb(t) = i 1(t)H b(t) =
given by . L b(t). Similarly, letTo(t) = S(bo())S” (bo(t)) > 0 and
Wz _Wy ~
S(CU) = —Wyz 0 Wy s (2) bo(t) = Hgolt)” bo(t)
wy —wr O Finally, f<or the geomagnetic field the tilted dipole model

. . will be used in the following (see.g., [22]). This model can
Teoits € R?’_ is the vector of external torques induced byhe in turn approximated with a time-periodic function (with
the magnetic coils andy;,; € R? is the vector of external angular frequencys = 2w, wo being the orbital angular
disturbance torques. frequency) provided that timescales shorter that the Earth

As for the attitude kinematics, a number of possiblgotation period are considered.

parameterisations (seeg., [22]) can be adopted. A fre-  Remark 1: In the following we will assume that the
quently adopted parameterisation is given by the four Eulejonsidered orbit for the spacecraft satisfies the condition
parameters (or quaternions), which lead to the following

. . . . B 1 T
representation for the attitude kinematics Ty = TIEH _/ To(t)dt =
. o0 0
q= W(Q)W (3) 1 T -
:1im—/ S(bo(t))S* (bo(t))dt > 0.
whereg = [¢1 ¢ g3 q4]T =[q” q4]T is the vector T—oo T' Jo (Bo(£))5™(bo(£))
of unit norm @”q = 1) Euler parameters and This assumption is satisfied for most orbits of practical
¢ s interest for low Earth orbit spacecratft.
4 —43 2
W 1l @ —-q 4 I1l. STATE FEEDBACK STABILISATION
(a) = 2 -2 @ qa |’ “) In this Section the general stabilisation result for a space
—q1 —Qq2 —q3 craft with magnetic actuators given in [15] for the case dif fu

state feedback (attitude and rate) is recalled. Withous tds
generality in the following we assume that the equilibriuum t

- . . _ _ T
The available on-board actuators are a set of three magt Stab'l'.s.ed IS given qu, 0), whereg — [O 0 0 1] )
netic coils, aligned with the spacecraft body axes, which Proposition 1. Consider the magnetically actuated space-

generate torques according to the law craft described by (8) and the control law

—1/.2
Tcoils = Meoils X B(t) - S(B(t))mcoil& (5) X w=-1 (E kpq * Ekv(’tj)’ (9)

with &k, > 0 andk, > 0. Then there exists* > 0 such that
where x denotes the vector cross produst..is € R® is  for any 0 < = < ¢* the control law (9) ensures thai, 0)
the vector of magnetic dipoles for the three coils (whichs a locally exponentially stable equilibrium for the cldse
represent the actual control variables for the coidg)) < loop system (8)-(9). Moreover, all trajectories of (8)-(3g
R? is the vector formed with the components of the Earth'sych thatg — 0 andw — 0.
magnetic field in the body frame of reference. Note that the  Proof: See [15]. [
vectorb(t) can be expressed in terms of the attitude matrix Proposition 1 shows that for magnetic attitude control the
A(q) (see [22] for details) and of the magnetic field vectoproportional and derivative actions must meet the scaling

i.e, the attitude of the inertially pointing spacecraft is re
ferred to the ECI reference frame.

expressed in the ECI coordinates, namiglyt), as condition defined by (9) to guarantee closed-loop stability
s ~ In this respect, this result provides a very useful guidelin
b(t) = A(@)bo(1), ) for the design of magnetic controllers in practical casest a

and that the orthogonality of(q) implies [|b(t)|| = ||bo(¢)]- combin_es_ the s_ir_nplicity of a state feedback control law with
Since ran S(l;(t)) —9 (HBO(UH £ 0 along all orbits of an explicit stability condition. On the other hand, the deoi

of a suitable value foe cannot be carried out on the basis
of Proposition 1 only, but requires some additional methods
and tools, which will be discussed in the following Sections
In particular, in order to deal with the periodically forced
(i.e., nonautonomous) nature of the closed-loop system,
Floquet theory will be used in Section IV for the local
analysis {.e., based on the linear approximation of the
closed-loop system around the equilibriuig, 0)) while a
T(~( )) ) more general investigation will be carried out in Section V
using continuation methods for nonautonomous systems.

practical interest for magnetic control), magnetic aaitgmt
do not provide complete controllability of the system atreac
time instant. In particular, the kernel &f(b(t)) is given by
the vector(t) itself, i.e., at each time instant it isot possible
to apply a control torque along the direction l}:ﬁf).

In the following so-called "projection-based” magnetic
controllers will be considered.e., the preliminary feedback

1
oo (1)]2

Meoils =



IV. LOCAL STABILITY ANALYSIS the duration of simulations while approaching the bifurca-

A first approach to the problem of assessing the randi¥n- In particular, saddle sets, which are hard to find by
of values of e for which Proposition 1 holds is basedsmulatmn, play a fundamental role in bifurcation anaysi

on a local analysis of the closed-loop system (8)-(9). Th ince they, together with attracting and repelling setfinde

linear approximation of the closed-loop system around th '€ stru_cture of the phase portrait. Th_|s IS yvhy numerical
equilibrium (g, 0) can be written as bifurcation analysis does not rely on simulation, but rathe

on continuation (see [9], [1]), a numerical method suited
q = %w (10) for computing (approximating through a discrete sequence
Io = —To(t)I ' (ekpq + ekyw). of points) one-dimensional manifolds implicitly defined as
the zero set of a suitable function. The general idea is to
?ormulate the computation of equilibria and their bifuioat
fsa suitable algebraic problem of the form

System (10) is linear time-periodic and its stability can b
therefore studied using Floquet theory (seg,, [5]).

As an example, in Figure 1 the evolution of the real part
the characteristic exponents of system (10) as a functien of F(u,p) =0, (11)
is illustrated for the numerical example discussed in great

detail in Section VI. As can be seen from the Figure, one g¥heréu is composed of the system’s state and possibly other
variables characterizing the system gmds the parameter

x10° vector. Problem (11) is defined byequations and +1 free
R variables (including parameters): knowing a point saiiefy
(11), the Implicit Function Theorem can be applied, allagvin
the explicit solution of the system as a function of the free
parameter. This approach however is directly applicablg on

in the case of autonomous systems. In order to deal with
nonautonomous systems, such as (8)-(9), some additional
issues have to be dealt with, which are discussed in the
following subsection.

Real parts of characteristic exponents

A. Continuation of honautonomous systems solutions

For the specific case of nonautonomous systems, the
‘ continuation approach outlined above calls for some prelim
R inary modification to the system in order to work out an
equivalent autonomous representation. This can be achieve
Fig. 1. Real parts of closed-loop characteristic exponasta function of DY bordering the nonautonomous system with two additional

€. variables described by the dynamical system
the characteristic exponents approaches the imaginasy axi @ = a-wh+ (O‘z + 52)0" (12)
for increasing values of and eventually crosses it far~ B = wa+pB+(a+5%)p.

0.0024. While this analysis already provides some insightrhe unique globally stable solution of this system is the
into the problem of choosing the value eofin the control trajectorya(t) = cos(wt + ¢), B(t) = sin(wt + ¢). Starting
law (9), in the following Section a more general approach tgt the point(a, ) = (1,0), we set¢ = 0, and we can thus
the problem will be followed, based on bifurcation analysisyse then and 3 variables in order to eliminate the periodic
V. BIFURCATION ANALYSIS time dependence fr_om the or|g_|nal system. Note, however,
that now even stationary solutions of the nonautonomous
Equations (8)-(9) define a parameter-dependent family gfystem have been transformed into limit cycles of the new
dynamical systems. Parametgplays a key role in determin- bordered autonomous one. A further step to be carried out
ing both stability and performance of the magnetic congroll is the transformation of the continuation problem for a timi
In order to get a more general view on the behavior of theycle (usually expressed as a Boundary Value Problem) into
closed-loop system for different values of this parameter, an algebraic problem such as (11). This step is performed
apply bifurcation analysis [18]. Indeed, this approachwad  automatically by numerical continuation tools through or-
one to work out the catalogue of the qualitative behaviorgogonal collocation techniques (sesg., [8], [3]).
of the system, together with the regions, delimited in pa- . . ] o
rameter space by bifurcations, where the different belavioB- Normal form analysis and bifurcations of limit-cycles
occur. Although one might hope to detect bifurcations by Loss of stability due to one or more multipliers leaving the
simulating,e.g., system (8)-(9), for various combinations ofunit circle can be also detected with continuation analysis
parameter and initial conditions, such a brute force apgroaand it corresponds, by definition, to a bifurcation. Through
is hardly effective and accurate in practice. This becaugshe Center Manifold Projection Theorem it is possible to
bifurcations of equilibria and cycles are associated with eharacterise the dynamics of the system in a neighborhood
loss of stability, so that one should dramatically increasef the bifurcating limit cycle, reducing the system to the so



called normal forms of each bifurcation [14]. In particular, has been used in this study. As mentioned in the previ-
three situations are possible as far as bifurcations oft imous Section, in order to analyze asymptotic behaviors of
cycles are concerned: the periodically forced system (8)-(9), we need to analyze
1) Limit point of cycles bifurcation. Before the bifurcation Periodic solutions of the corresponding bordered system.
two limit cycles exist, with different stability prop- With reference to the numerical va_lues of_the parameters
erties. At the bifurcation they collide and disappear©’ the spacecraft model reported in Section VI, through

Symmetries in the system can cause particular casé@ntinuation analysis the bifurcation diagram reported in
of this bifurcation, such as th@itchfork of cycles Figure 2 was obtained, in which three different branches of

bifurcation. In this case two scenarios are possiblelimit cycles are shown.
i.e., the supercritical one (before the bifurcation only a
stable limit cycle exists, after the bifurcation two stable
and one unstable limit cycles exist) and the subcritical
one (before the bifurcation a stable and two unstable
limit cycles exist, after the bifurcation only an unstable
limit cycle exists).

2) Period doubling bifurcation. A limit cycle collides o6
with another limit cycle that, at the bifurcation, hasa .|
doubled period: again, two scenarios are possible, theg
supercritical one (before the bifurcation only a stable %
limit cycle exists, after the bifurcation a period-doubled Bl
stable limit cycle and an unstable limit cycle exist) and
the subcritical one (before the bifurcation the stable
limit cycle and the unstable period-doubled limit cycles o L
exist, after the bifurcation only an unstable limit cycle “ gpc
remains). PSP

3) Neimark-Sacker bifurcation. A limit cycle collides at -0
the bifurcation with an invariant torus.€., a quasi- € x10”
periodic invariant curve): also here two scenarios are
possible,.e,, the supercritical one (before the bifurca-rig. 2. Bifurcation diagram for the attitude dynamics of thagnetically
tion only a stable limit cycle exists, after the bifurcationcontrolled spacecraft: BPC - Branch Point of Cycles biftiorg LPC -
a stable invariant torus and an unstable limit Cycléimit Point of Cycles bifurcation; NS - Neimark-Sacker hifation.

exist) and the subcritical one (before the bifurcation )
the stable limit cycle and an unstable invariant torus In the central branch we have the stationary controlled

exist, after the bifurcation only an unstable limit cycleSelution. i.e, the limit cycle of the bordered system associ-
remains). ated with the equilibriumg, 0) for.the original close.d-lloop
system (8)-(9). As Floquet analysis has revealed, thigisolu
is stable up tos = 2.386490 x 1073. At that value the
solution undergoes a subcritical pitchfork bifurcatiomoa
here, two non-trivial periodic unstable solutions deptrat
In order to investigate the behaviour of system (8)-(9) fogive rise to the other two branches. The trivial limit-cycle
increasing values of, the system is first bordered accordingloses its stability after the bifurcation and becomes a leadd
to (12) withw = 2wp. An additional issue to be dealt with limit cycle (with a one-dimensional unstable direction).
in connection to (8)-(9) is the redundancy of the quaternion As mentioned above, normal form analysis reveals that
parameterisation. Indeed, (8)-(9) is an overdetermined dywo saddle limit cycles are involved in the pitchfork of ogcl
namical system, since a dynamic equation can be substitutefurcation. Following the upper branch, we see that the
by the algebraic constrainf + ¢35 +¢5+¢; = 1. So, in order limit cycle (that increases in amplitude) undergoes a limit
to have a well defined differential problem, the order of thgoint of cycles bifurcation at = 2.287454 x 103, and
system must be reduced making explicit one of the elemerttsen becomes stable. For further increasing values tie
of the quaternion vector. Note that as it is impossible to magtable limit cycle undergoes at= 3.080625 x 10~3 a su-
completely the 3-sphere with an explicit function, anadysipercritical Neimark-Sacker bifurcation. After the bifation
has to be confined to the positive hemisphgre- 0 of the 3-  a stable quasi-periodic invariant is born, as confirmed ley th
sphere. Continuation results should then be analyzed ierordsimulation results presented in Section VI.
to check thaig, # 0 over the trajectories. Simulations will  Looking at the lower branch, also in this case the unstable
then be necessary in order to see the behaviors of trajestorlimit cycle undergoes a limit point of cycles bifurcation at
in the neighborhood of the asymptotic state (see Section VB = 2.255670 x 10~3 and then becomes stable. Following
Practically, the problem can be solved through continuthe stable solution, the limit cycle undergoes a supecatiti
ation tools, such as Auto [11] or MatCont [10]; the latterNeimark-Sacker bifurcation at= 3.003435 x 103, gener-
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ating another stable invariant torus.

From the above analysis two interesting points can be O e T
made. 05 2 a 6 8 10
First, notice that relying only on Floquet analysis to 1
determine the limiting value far may lead to erroneous con- < 05
clusions. Indeed, the equilibriutg, 0) is the sole asymptotic % 3 2 s s 10
solution for the system only up to = 2.255670 x 1073, 02
while the local approximation of the system reaches the = of
stability boundary at the (larger) valee= 2.386490 x 10~3. 02 2 a 6 8 10
Therefore the bound = 2.255670 x 10~ (more strict _
than the one obtained using Floquet analysis) should be 83 ]
8 10

considered for controller design purposes. o 5 2 p
In addition, the analysis reveals thatef> 2.287454 x Time - (ori

10~ more than one asymptotic behavior is possible, de-

pending on the initial conditions. In particular, for vatuef x10°

the scaling parameter such thaR87454 x 1073 < ¢ <

2.386490 x 1073 the three attractors depicted in Figure

3 characterise the asymptotic behaviour of the closed-loop 0 2 4 6 8 10

system. x10°

(O [rad/s]
o

, = [rad/s]

W, = [rad/s]
o

Time - [Orbit]

W, = [rad/s]

Fig. 4. Quaternion and angular rates for= 2.2324 x 10~3: initial state
leading to a trajectory converging to the equilibrium.

@, - [rad/s] -1 -4

w, - [rads] of the bifurcation diagram in Figure 2. Note that for the

computed trajectories the conditign > 0 actually holds.
Finally, a simulation has been carried out with= 3.1 x

1073 to illustrate the convergence of the solution to a stable

torus, as predicted by the analysis for this value of thdrsgal

parameter. The time-domain representation of the solugion

VI. SIMULATION RESULTS depicted in Figure 7, from which the presence of multiple

In order to assess the time-domain behaviour of th&equencies in the oscillation of the state variables can be

magnetic attitude control law discussed in this paper,rave S€en. Figure 8 on the other hand shown a 3D representation

Fig. 3. Attractors (equilibrium and limit cycles) far= 2.324 x 10~3.

simulated case studies have been considered. of the torus and the associated Poincare’ map.
The reference spacecraft has an inertia matrix given by
I = diag27,17,25] kgm?, and operates in a near polar VIl. CONCLUDING REMARKS
(87¢ inclination) orbit with an altitude of450km and a
corresponding orbit period of abo&at00s. The controller In this paper the dynamics of a spacecraft equipped with
parameters are given by, = k, = 50. magnetic actuators operating under a static attitude aed ra
For the considered spacecraft, first three simulations hateedback control law designed using averaging theory has
been carried out withe = 2.324 x 1073, in order to been considered and the problem of determining the asymp-

illustrate that in this case three attractors can chariaetéine totic behaviour of the closed-loop system as a function ef th
asymptotic behaviour of the system, depending on the lnitiaveraging scaling parameter has been analysed, using bifur
conditions. Indeed, Figure 4 depicts a trajectory for tlaest cation methods. The results provide an accurate assessment
variables of the closed-loop system which converge to thaf the maximum value of the scaling parameter for which
desired equilibrium, while, on the other hand, Figures 5 antthe closed-loop system exhibits the desired equilibrium as
6 illustrate trajectories converging to the stable limitleg sole asymptotic behaviour and a catalogue of other possible
associated to the upper and the lower branches, respgctivelttractors for the range of practical interest of the patame
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Fig. 5. Quaternion and angular rates for= 2.2324 x 10~3: initial state
leading to a trajectory converging to the upper branch liyitle.
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